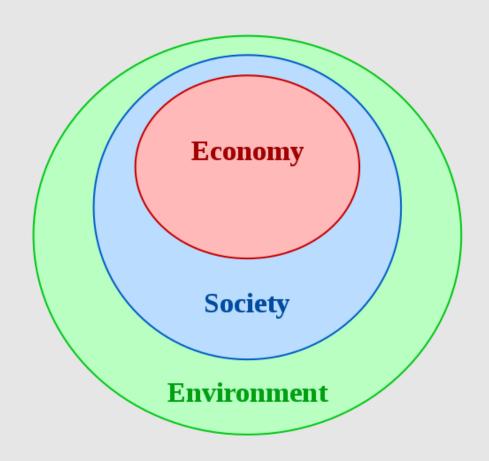
Sustainable

Talking points for a discussion on the different uses and concepts of the word sustainability, with a particular focus on sustainable use of natural resources (including native biodiversity) in rural landscapes. The discussion was led by Sue McIntyre for the Murrumbateman Landcare group on August 3rd 2017.

The reference source for this material is:

McIntyre, S., McIvor, J. G. & Heard, K. M. (2002) (eds) *Managing and conserving grassy woodlands*. CSIRO Publishing, Melbourne.

Dictionary


"sustain" meaning "to hold up: to bear: to support: to provide for: to maintain ..."

Ecology

"sustainability" "sustainable"

"the property of biological
systems to remain diverse and
productive indefinitely"

Three pillars of sustainability Social, economic, environmental

Assumes that environment immediately constrains other activities, which it does not

Who determines what is to give?

"The triple bottom line"

Manifestations of (un)sustainability

Landscape use

Urban development
Agricultural development
Peri-urban development
Tourist development

Waste

Landfill

Plastics

Overconsumption

Food waste

Pollutants

Sewerage

 CO_2

Agri-chemicals, fertilizers

Industrial chemicals

Household chemicals

Resource consumption

Mining

Water diversion

Fishing, hunting

Grazing

Timber extraction

Sustainability is only a relative thing

- Mining and burning coal releases CO₂ solar has embedded energy and toxins (panels and batteries)
- Organic gardening reduces toxic chemicals but it is an intensive land use, and in the wrong location can have adverse effects on biodiversity
- Biofuels fix CO₂ growing biofuels covers the landscape with intensive agriculture and diverts land from food production
- Riding a bike to work fast, and having an extra shower to cool off uses about the same energy as driving
- Owning a German shepherd might reduce your travelling energy budget, but uses similar resources to driving 14,000 km per year.

Solar energy goes into processes that stabilize ecosystems

No humans

Diversion of energy to stabilize human society

Intensive human land-use

Ecosystem function

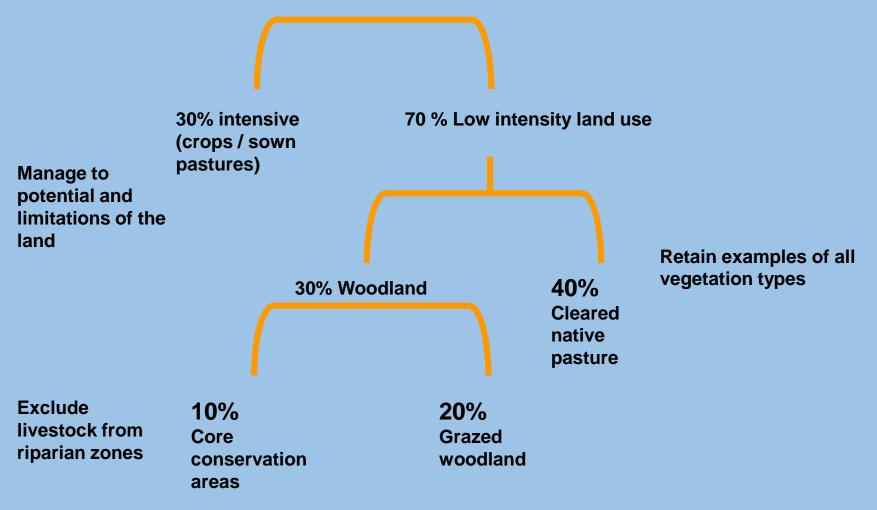
Human function

Sustainable landuse

- Property planning and management should consider the whole of property and its place in the catchment.
- Manage soils to prevent erosion and maintain productive capacity and water quality.
- Manage pastures for production and to maintain the variety of plants and animals.
- Maintain trees for the long-term ecological health of the property and catchment.
- Manage 10% of the property for wildlife values.
- Watercourses are particularly important and require special management.

SOIL: Maximum of 30-40% of bare ground exposed.

PASTURE: Tussock grasses dominate 60 - 70% of the pasture area.


TREES: Minimum of 30% woodland or forest cover on properties.

TREES: Minimum viable woodland patches are 5-10 ha.

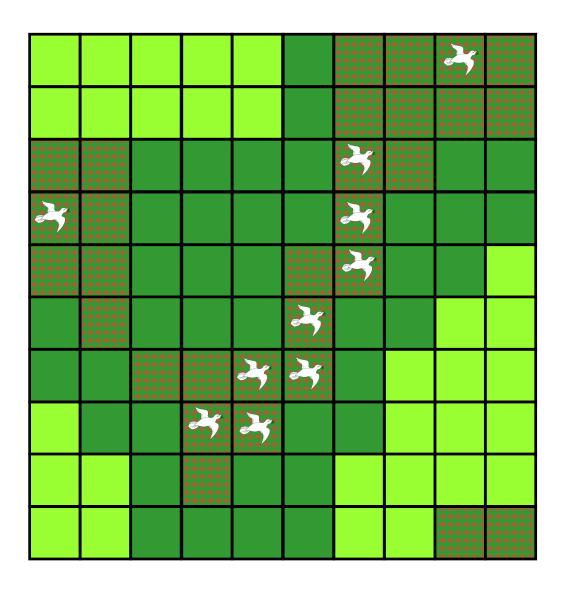
WILDLIFE: Manage at least 10% of the property for wildlife.

PASTURE: Limit sown pastures to a maximum of 30% of the property.

Thresholds represent maximum levels of development & use

Principles provide details of management and necessary modifications of thresholds for specific sites

Soil erosion: 60 - 70% cover → connectivity.


Animal production: 90% of landscape, 30% intensively.

Salinity: >30% of landscape under woodland.

Mobile woodland fauna: 30% habitat → connectivity.

Understorey species: 70% habitat → connectivity.

Sensitive fauna: Represented but +/- viable, depending on management and landscape layout.

70% Native grassy woodland

10% Woodland managed for wildlife

30% Woodland with native pasture understorey

40% Native pasture, not fertilized.

30% Intensive land-use

Sown pasture / fertilized pasture / cropping land.